The effects of polymer molecular weight on filament thinning and drop breakup in microchannels
نویسندگان
چکیده
We investigate the effects of fluid elasticity on the dynamics of filament thinning and drop breakup processes in a cross-slot microchannel. Elasticity effects are examined using dilute aqueous polymeric solutions of molecular weight (MW) ranging from 1.5×103 to 1.8×107. Results for polymeric fluids are compared to those for a viscous Newtonian fluid. The shearing or continuous phase that induces breakup is mineral oil. All fluids possess similar shear-viscosity (~0.2 Pa s) so that the viscosity ratio between the oil and aqueous phases is close to unity. Measurements of filament thickness as a function of time show different thinning behavior for the different aqueous fluids. For Newtonian fluids, the thinning process shows a single exponential decay of the filament thickness. For low MW fluids (103, 104 and 105), the thinning process also shows a single exponential decay, but with a decay rate that is slower than for the Newtonian fluid. The decay time increases with polymer MW. For high MW (106 and 107) fluids, the initial exponential decay crosses over to a second exponential decay in which elastic stresses are important. We show that the decay rate of the filament thickness in this exponential decay regime can be used to measure the steady extensional viscosity of the fluids. At late times, all fluids cross over to an algebraic decay which is driven mainly by surface tension. Disciplines Engineering | Mechanical Engineering Comments Suggested Citation: Arratia, Paulo, et. al. (2009) The effects of polymer molecular weight on filament thinning and drop breakup in microchannels. New Journal of Physics. Vol. 11. November 2009. This article is available online at http://dx.doi.org/10.1088/1367-2630/11/11/115006 This journal article is available at ScholarlyCommons: http://repository.upenn.edu/meam_papers/173 The effects of polymer molecular weight on filament thinning and drop breakup in
منابع مشابه
Polymeric filament thinning and breakup in microchannels.
The effects of elasticity on filament thinning and breakup are investigated in microchannel cross flow. When a viscous solution is stretched by an external immiscible fluid, a low 100 ppm polymer concentration strongly affects the breakup process, compared to the Newtonian case. Qualitatively, polymeric filaments show much slower evolution, and their morphology features multiple connected drops...
متن کاملAn analytic solution for capillary thinning and breakup of FENE-P fluids
The FENE-P model of a fluid is particularly suitable for describing the rheology of dilute polymer solutions (Newtonian solvents containing small amounts of dissolved polymer) as a result of its ability to capture nonlinear effects arising from the finite extensibility of the polymer chains. In extensional flows, these polymer solutions exhibit dramatically different behavior from the correspon...
متن کاملIs there a Relationship between the Elongational Viscosity and the First Normal Stress Difference in Polymer Solutions?
We investigate a variety of different polymer solutions in shear and elongational flow. The shear flow is created in the cone-plate-geometry of a commercial rheometer. We use capillary thinning of a filament that is formed by a polymer solution in the Capillary Breakup Extensional Rheometer (CaBER) as an elongational flow. We compare the relaxation time and the elongational viscosity measured i...
متن کاملLattice Boltzmann Simulation of Deformation and Breakup of a Droplet under Gravity Force Using Interparticle Potential Model
Abstract In this paper interparticle potential model of the lattice Boltzmann method (LBM) is used to simulate deformation and breakup of a falling droplet under gravity force. First this model is applied to ensure that the surface tension effect is properly implemented in this model. Two tests have been considered. First, it has been checked an initial square drop in a 2D domain can freely def...
متن کامل